
Bistatic Measurement Fusion

from Multistatic Configurations

for Air Collision Warning

WENBO DOU

YAAKOV BAR-SHALOM

PETER WILLETT

A requisite for unmanned aircraft systems (UAS) to operate

within a controlled airspace is a capability to sense and avoid colli-

sions with non-cooperative aircraft. Ground-based transmitters and

UAS-mounted receivers are preferred due to limitations on UAS.

This paper assumes a constant velocity motion of an intruder (tar-

get) aircraft and presents a method to estimate the position and

velocity of the target so as to predict the closest point of approach.

Bistatic range and range rate are assumed the only measurements

available. Several configurations are investigated from a parameter

observability point of view. It turns out that one needs three trans-

mitters in a general three-dimensional scenario to achieve decent

observability of the target motion parameter. With the assumption

that the target is at the same altitude as the ownship, one has a

two-dimensional scenario in which two transmitters are required in

order to have good observability. Simulation results show that the

maximum likelihood (ML) estimate of the target parameter using

an iterated least squares search can be considered as statistically

efficient in both multistatic configurations with good observabil-

ity for the scenarios considered in this paper. The collision warn-

ing can be carried out based on the ML estimate in two different

ways. The first approach is to formulate the collision as a hypothesis

testing problem using a generalized likelihood function. A second,

Bayesian, approach is also presented. The performance of the like-

lihood based collision warning shows that the multistatic configura-

tion with three transmitters is reliable for collision warning but that

the multistatic configuration with two transmitters under the same

target and ownship altitude assumption is prone to false alarms. In

the configuration with three transmitters, the Bayesian approach

yields the similarly reliable collision warning performance as the

likelihood-based approach when they use threshold values of the

same magnitude.
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1. INTRODUCTION

Sense-and-Avoid (SAA) capabilities are required for

unmanned aircraft systems (UAS) to operate within the

national airspace, since the proliferation of UAS has

increased the risk of aircraft collision. The air traffic

control radar beacon system works well to coordinate

cooperative aircraft. Active sensing methods have to

be employed for UAS to be functional against non-

cooperative targets. The limitations on the size, weight

and power of UAS suggest an implementation with

ground-based transmitters and UAS-mounted receivers.

There have been numerous works on the UAS col-

lision avoidance problem [1]. Most have emphasized

avoidance algorithms [5][13][15], while sensing and es-

timation methods have been less extensively explored.

In [9], a monostatic radar configuration in a two-

dimensional (2-D) plane with range and bearing mea-

surements is considered for collision avoidance. In [18],

collision warning in a 2-D plane using a monostatic

radar with range and azimuth measurements is dis-

cussed. A confidence ellipsis at a given time instant

is mathematically derived and a confidence corridor is

constructed by the regions covered by all confidence

ellipses at all time instants within a time interval of

interest. A warning decision is based on whether any

target aircraft falls within this confidence corridor. The

collision warning problem in a multistatic radar config-

uration has not yet been reported in the literature.

Target localization is possible using a multistatic

radar with time of arrival (TOA) measurements [6][10]

[14][17]. In [14], target localization is considered in a

multistatic ultra wideband radar. The problem is formu-

lated as estimation of target position, which is solved

using three methods. Taylor series method is shown to

have smaller estimation errors than either least-squares

or spherical-interpolation method in a system with one

transmitter and four receivers. In [10], two methods are

presented to estimate the position of a target in a mul-

tistatic passive radar. The spherical-intersection method

is shown to be better than the spherical-interpolation

method in a system with four transmitters and one re-

ceiver. In [6], target localization is investigated in a

multistatic passive radar system with one receiver when

the receiver position is subject to random errors. An

approximated maximum likelihood optimization prob-

lem is formulated and solved by a semidefinite relax-

ation combined with bisection method. In [17], target

localization based on both time of arrival and angle

of arrival measurements in a multistatic radar system

is formulated and a weighted least square method is

proposed to estimate the target location. TOA measure-

ments can be used to estimate the position but not the

velocity, range rate measurements are needed for the

velocity.

In our previous work [7][8], a strategy for collision

warning in a three-dimensional (3-D) space was pre-
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TABLE I

Target motion parameter observability summary.

Sensor Number of

Scenario configuration transmitters Observability

2-D bistatic 1 marginally observable

2-D multistatic 2 observable

3-D bistatic 1 unobservable

3-D multistatic 2 marginally observable

3-D multistatic 3 observable

sented, assuming a constant velocity motion of an air-

craft of interest (target/intruder), to estimate the position

and velocity of the target so as to predict the closest

point of approach (CPA). Since an inexpensive system

is the goal, only bistatic range and range rate mea-

surements are available. Several configurations listed

in Table I are investigated from a parameter observ-

ability point of view. In general 3-D scenarios, the tar-

get motion parameter is shown to be unobservable in a

bistatic configuration (that is: one transmitter and one

receiver, not co-located) and a change of course of the

receiver (the “observability platform maneuver” that is

the saving grace for angle-only target motion analysis

(TMA)) merely improves the observability marginally.

In a multistatic configuration, one has marginal observ-

ability using two transmitters, but good observability

with three. In a 2-D scenario which assumes that the

target is at the same altitude as the ownship, the tar-

get parameter is still only marginally observable in a

bistatic configuration. The observability is improved by

a small maneuver of the ownship but it is still unap-

pealing. On the other hand, one can have very good

observability of the target motion parameter with two

transmitters in a 2-D multistatic configuration with the

same-altitude assumption, which turns out to be another

practically useful configuration in addition to a 3-D

multistatic configuration with three transmitters. Simu-

lation results and comparison with the CRLB show that

the ML estimate of the target parameter can be consid-

ered as statistically efficient in both useful configura-

tions.

The collision warning is formulated as a hypothesis

testing problem using a generalized likelihood function.

Monte Carlo simulation shows the likelihood-based col-

lision warning algorithm using three transmitters has no

missed detection of a collision and has no false alarms

when the intruder and ownship altitude separation is

beyond 100 m. The likelihood-based collision warning

algorithm using two transmitters with the same-altitude

assumption has no missed detection of a collision, ei-

ther. It is, however, prone to false alarms when the CPA

angle is near 180±.
This paper extends the previous work [7][8] by (i)

taking the physical dimensions of aircraft into consid-

eration in the likelihood-based collision warning al-

gorithm; (ii) investigating the statistical efficiency of

the closest point of approach (CPA) time estimate in

the likelihood-based collision warning algorithm; (iii)

adding a Bayesian approach for collision warning. Since

air collision is deadly, no missed detections can be tol-

erated. It is also necessary to account for the physi-

cal dimensions of aircraft by adding a safety margin to

compensate for the errors arising in the point modeling

of aircraft. Simulation results show that the likelihood-

based collision warning algorithm with a safety margin

of 100 m has no missed detections of collision but be-

comes more conservative with false alarms occurring in

more situations.

The likelihood based collision warning algorithm

makes decisions by using an estimated CPA time, and

Monte Carlo simulations have shown that the CPA time

estimate can be considered as unbiased and statistically

efficient for the simulated scenarios. The Bayesian ap-

proach formulates the CPA distance as a random vari-

able and estimates its probability density function (pdf)

as a fitted Rician distribution. Then it defines the colli-

sion event by considering the physical dimensions of the

aircraft and calculates the probability of collision, based

on which a warning decision can be made. The perfor-

mance of the Bayesian collision warning algorithm is

consistent with that of a likelihood-based algorithm.

The remaining sections of this paper are organized

as follows. Section 2 describes and formulates the gen-

eral 3-D problem and considers a special 2-D problem.

Section 3 analyzes several possible configurations for

collision warning including both 3-D and 2-D scenarios

and shows that two of them seem to be practically use-

ful. Section 4 presents the ML estimator based on which

two different collision warning algorithms are described

in Section 5. Section 6 investigates the efficiency of the

ML estimator of the target motion parameter and the ef-

ficiency of the CPA time estimate used in the likelihood-

based collision warning algorithm, and also shows the

performances of both collision warning algorithms and

Section 7 draws conclusions.

2. PROBLEM FORMULATION

Assume a target of interest (intruder) is moving in

3-D with a constant velocity. The 3-D target position in

Cartesian coordinates at time k is therefore

»(x,k) = x0 + kT _x0 k = 0,1, : : : (1)

where

x= [x00, _x
0
0]
0 = [x,y,z, _x, _y, _z]0 (2)

is the unknown target motion parameter which is a

vector of dimension nx = 6 consisting of the target’s

position x0 and velocity _x0 in Cartesian coordinates at

time k = 0 (or without loss of generality at any chosen

reference time); and T is the sampling period. There

are NTx (NTx ¸ 1) transmitters at known locations ui =
[xui ,yui ,zui ]

0, i= 1, : : : ,NTx. At time k (k > 0), a moving
receiver (the ownship) with known position s(k) and

velocity _s(k) can obtain measurements consisting of the
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Fig. 1. A multistatic configuration in the X-Y plane. The time

differences of arrival (actual measurements) between the direct path

(ownship illumination) and the indirect path (bistatic range)

multiplied by the speed of light is added to the direct path distance

to yield an equivalent bistatic range measurement.

bistatic range [4] illustrated in Figure 1 and the bistatic

range rate from the ith transmitter located at ui given by

zi(k) = hi(x,k)+wi(k) i= 1, : : : ,NTx (3)

where

hi(x,k) =

·
ri(k)

_ri(k)

¸

=

24 k»(x,k)¡ s(k)k+ k»(x,k)¡uik
[»(x,k)¡ s(k)]0[ _x0¡ _s(k)]

k»(x,k)¡ s(k)k +
[»(x,k)¡ui]0 _x0
k»(x,k)¡uik

35
(4)

and wi(k) are the measurement noises, assumed to be

independent and identically distributed zero-mean white

Gaussian sequences with known covariance matrix

Ri =

·
¾2r 0

0 ¾2_r

¸
(5)

The measurement function comprising all the mea-

surements at time k is

z(k) = h(x,k)+w(k) k = 1, : : : (6)

where

z(k) = [z1(k)
0 : : :zNTx (k)

0]0 (7)

h(x,k) = [h1(x,k)
0 : : :hNTx (x,k)

0]0 (8)

w(k) = [w1(k)
0 : : :wNTx (k)

0]0 (9)

and

R(k) = E[w(k)w(k)0] =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ RNTx

377775 (10)

Since both intruder and ownship are moving, it is

important to avoid any collision between them. The goal

is thus to estimate the target parameter x based on N
frames of measurements, and to deliver a warning long

enough and confidently enough before a possible colli-

sion occurs so as to predict the CPA and, presumably,

to do something about it if needed.

2.1. Parameter Observability

We need to check the observability of the target mo-

tion parameter (2) to see whether there is sufficient in-

formation in the data. Observability requires the invert-

ibility of the Fisher information matrix (FIM), which is

given by [3]

J = Ef[rx ln¤(x;Z)][rx ln¤(x;Z)]0gjx=xt (11)

where ¤(x;Z) is the likelihood function of the parameter

based on the measurement set

Z= z(k)Nk=1 (12)

and xt is the true value of the target motion parameter.
In a simulated scenario, xt is known. However, in a real

scenario where xt is unknown and needs to be estimated,
the FIM is evaluated at the estimate.

Since the measurement noises are assumed to be

white, we have

¤(x;Z) =

NY
k=1

p(z(k) j x) (13)

where

p(z(k) j x) = j2¼R(k)j¡1=2

¢ exp(¡ 1
2
[z(k)¡h(x,k)]0R(k)¡1[z(k)¡h(x,k)])

(14)

The gradient of the log-likelihood function is

rx ln¤(x;Z) =¡
NX
k=1

[rxh(x,k)0]R(k)¡1[z(k)¡h(x,k)]
(15)

Substituting (15) into (11) yields

J =

NX
k=1

[rxh(x,k)0]R(k)¡1[rxh(x,k)0]0jx=xt

=

NX
k=1

NTxX
i=1

[rxhi(x,k)0]R¡1i [rxhi(x,k)0]0jx=xt (16)

If J is not invertible, then the target motion param-

eter is unobservable. Otherwise, the size of confidence

region for the true target position [3] can be used to dis-

tinguish between marginal observability and good ob-

servability. In this paper, marginal and good observabil-

ity are distinguished from each other by the length of

the longest semiaxis of 99.9999% probability region. In

the application of air collision warning, one could say

that the observability is good if the longest semiaxis

is, say, less than 100 meters and that the observability

is marginal if the longest semiaxis is, say, more than

BISTATIC MEASUREMENT FUSION FROM MULTISTATIC CONFIGURATIONS FOR AIR COLLISION WARNING 165



Fig. 2. Confidence region and probability region in the X-Y plane.

If an estimate is inside 95% probability region around the truth, then

the truth must be inside 95% confidence region around this estimate.

100 meters. Mathematically, the length of the longest

semiaxis is proportional to the square root of largest

eigenvalue of the covariance matrix in (20).

2.2. Confidence Region in the General Case

Suppose one has an unbiased and statistically effi-

cient estimate x̂, that is

E[x̂] = xt (17)

P
¢
=E[[x̂¡ xt][x̂¡ xt]0] = J¡1 (18)

where J¡1 is the Cramer Rao lower bound (CRLB). The
3-D target position estimate at an arbitrary time t is

x̂p(t) =

2641 0 0 t 0 0

0 1 0 0 t 0

0 0 1 0 0 t

375 x̂ ¢=©p(t)x̂ (19)

and the corresponding covariance is

Pp(t) = ©p(t)P©p(t)
0 (20)

If one further assumes x̂ is Gaussian, that is,

x̂»N (xt,P) (21)

then, because of linear transformation in (19)

x̂p(t)»N (xp(t),Pp(t)) (22)

The normalized estimation error squared (NEES) for the

target position xp(t) at t, defined as

²p(t) = [xp(t)¡ x̂p(t)]0P¡1p (t)[xp(t)¡ x̂p(t)] (23)

is chi-square distributed with nx=2 degrees of freedom,

that is,

²p(t)» Â2nx=2 (24)

Let g be such that

Pf²p(t)· g2g= 1¡Q (25)

where Q is a small tail probability. Given the predicted

target position x̂p(t), the 100(1¡Q)% confidence region

[2] for the true position xp(t) is defined to be within the

ellipsoid given by

[xp(t)¡ x̂p(t)]0P¡1p (t)[xp(t)¡ x̂p(t)] = g2 (26)

Alternatively, given the true position xp(t), (26) is also

defined to be the 100(1¡Q)% probability region for

the predicted target position x̂p(t). These two regions

as shown in Figure 2 have identical geometrical sizes

since they can be represented by the same equation

as in (26). If either region is large, one has marginal

observability of the target position; if any one of the

regions is small, one has good observability of the target

position.

2.3. Confidence Region When Intruder and Ownship
at Same Altitude

If the intruder’s altitude z is assumed to be known

and is equal to that of the ownship, then the 2-D X-

Y plane at the altitude z is of interest and everything

related to the target can be considered restricted to

this 2-D space. Specifically, the target parameter to be

estimated becomes

x2D = [x,y, _x, _y]0 (27)

Correspondingly, the 2-D target position at an arbitrary

time t is

x2Dp (t) =

·
1 0 t 0

0 1 0 t

¸
x2D (28)

The confidence region for the true target position around

its estimate is now an ellipse given by (26).

3. SCENARIOS AND OBSERVABILITY ANALYSIS

From (26), the size of the confidence region for the

true target position around the predicted position is the

same as that of the probability region for the predicted

target position around the true position. Since it is more

convenient for an observability analysis to obtain the

probability region for the predicted target position with

the true target motion parameter assumed available than

to estimate the true target parameter and obtain the

confidence region for it, in this section several scenarios

are simulated with the knowledge of the true target

motion parameter and the probability region of the

estimate in each scenario is obtained without performing

any estimation.

A radar system, which consists of three transmit-

ters on the ground and one receiver mounted on an un-

manned aircraft system (UAS)–the ownship–is used

to warn of a possible collision between the UAS (own-

ship) and an intruder aircraft. The transmitters are

located at (0 m, 1000 m, 0 m), (0 m, ¡ 1000 m, 0 m)
and (1000 m, 0 m, 0 m) in Cartesian coordinates, and
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TABLE II

Scenario specifications. The last column reflects the results from Section 3.

Semiaxis lengths of 99.9999%

Scenario Transmitters used UAS motion Target altitude Collision probability region (m)

1 Tx1 CV Unknown Yes 3£ 109, 2020, 62
2 Tx1 two-segment CV Unknown Yes 6468, 1660, 109

3 Tx1 and Tx2 CV Unknown Yes 1542, 50, 41

4 Tx1 and Tx2 two-segment CV Unknown Yes 1402, 51, 41

5 Tx1,Tx2 and Tx3 CV Unknown Yes 50, 42, 11

6 Tx1,Tx2 and Tx3 CV Unknown No 48, 43, 12

7 Tx1 CV Known Yes 2600, 81

8 Tx1 two-segment CV Known Yes 301, 25

9 Tx1 and Tx2 CV Known Yes 40, 8

are denoted by Tx1, Tx2 and Tx3, respectively. The

UAS is moving at an altitude of 1500 m.

Eight collision scenarios and one non-collision sce-

nario listed in the Table II, differing in the number of

transmitters, the motion of the UAS and the dimen-

sionality of target parameter are studied here. Scenar-

ios with the “known target altitude” assumption are re-

ferred to as 2-D scenarios. The rest are 3-D scenar-

ios. Two motions of UAS are considered. In a con-

stant velocity (CV) motion, the UAS starts moving

from the point (¡4500 m, 0 m, 1500 m) at time t= 0 s
with a constant velocity _s0 = [50m/s, 0 m/s, 0 m/s]

0. In
a two-segment CV motion, the UAS starts with a con-

stant velocity [43 m/s, ¡ 25 m/s, 0 m/s]0 from the point
(¡4306 m, 752 m, 1500 m) at time t= 0 s for 27 s and
then executes a 5±/s coordinated turn for 6 s before
changing to another velocity [50 m/s, 0 m/s, 0 m/s]0

when it arrives at the location (¡2850 m, 0 m, 1500 m).
In all the collision scenarios, the intruder aircraft starts

from the position (4500 m, 0 m, 1500 m) at time t= 0 s

with a constant velocity _x0 = [¡50 m/s, 0 m/s, 0 m/s]0
and will collide with the UAS at time t= 90 s. In the

non-collision scenario, the altitude of the intruder air-

craft is assumed to be 1600 m, which is 100 m higher

than in the collision scenarios, and the CPA occurs at

time t= 90 s. Bistatic range and range rate measure-

ments are made from the ownship every 1 s over a pe-

riod of 60 s, which is 30 s before the CPA time. The

noise standard deviations for the range and range rate

measurements are assumed to be 8.66 m and 1 m/s,

respectively, at all times.

Figures 3 and 4 visualize all the 3-D scenarios and

plots the 99.9999% probability region, the lengths of the

semiaxes of which are also shown in Table II, around

the collision point or the target CPA in each scenario.

In Scenario 1, the FIM is nearly singular with a

condition number1 of 18.8. The large probability region

(which implies a large confidence region) indicates the

target parameter is practically unobservable and even an

efficient estimator is useless in such a situation.

1The condition number is log10(¸max=¸min), where ¸max and ¸min are

the largest and smallest eigenvalues of the FIM.

In Scenario 2, the FIM is not ill-conditioned. The el-

lipsoid is much smaller than in the first scenario, which

indicates the change of course in the ownship trajec-

tory improves the observability. However, the size of

the probability (or confidence) region is still quite large

so that even an efficient estimator remains practically

useless.

Compared with the 3-D bistatic configuration (Sce-

narios 1 and 2), adding a second transmitter in Scenarios

3 and 4 reduces the target localization uncertainty, al-

though the size of the probability region is still too large

to be useful. Comparison between Figures 3(c) and 3(d)

indicates that the further reduction of the localization

uncertainty resulting from the change of course in the

ownship trajectory in the multistatic configuration is not

as significant as in the bistatic.

As shown in Figures 4(a) and 4(b), the addition

of a third transmitter into the multistatic configuration

has significantly improved observability, which makes

the localization practically useful. Therefore, one needs

three transmitters in a 3-D multistatic configuration to

build up an efficient estimator based on which a useful

collision warning algorithm can be designed.

Figure 5 visualizes all the 2-D scenarios and plots

the 99.9999% probability region around the collision

point in each scenario. Compared with 3-D scenarios,

the knowledge of target altitude in a 2-D scenario

results in a significant reduction in the uncertainty. In

Scenario 7, the size of the probability region is still too

large to be useful. In Scenario 8, the probability region

could be useful, however, it is due to the change of

course of the ownship and this maneuver action itself

could lead a safety situation to a dangerous collision.

In Scenario 9, adding a second transmitter reduces the

target localization uncertainty significantly. The size

of this region is practically useful. Therefore, with

the knowledge of the target altitude one needs two

transmitters in a multistatic configuration to build up

an efficient estimator based on which a useful collision

warning algorithm can be designed.

In the sequel, collision warning is only considered

in those two practically useful configurations–3 trans-

mitters in general 3-D scenarios and 2 transmitters with
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Fig. 3. 99.9999% (ellipsoidal) probability region around the collision point in Scenarios 1 to 4. The target motion parameter is practically

unobservable in Scenario 1. The target motion parameter is marginally observable in Scenarios 2, 3 and 4. (a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

known target altitude in 2-D scenarios, corresponding

to Scenarios 5, 6 and 9.

4. THE MAXIMUM LIKELIHOOD ESTIMATOR

The ML estimate of the target motion parameter x

in (2) is

x̂ML = argmaxx
¤(x;Z) (29)

where ¤(x;Z) is given in (13). The ILS technique [2]

was used to find the ML estimate in this case. If we set

(15) to zero, we will notice that there is no closed-form

solution. Using a first order series expansion about an

estimate x̂j at the end of the jth iteration leads to an

iterative scheme and the (j+1)th estimate is

x̂j+1 = x̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(x̂j)] (30)

where

z= [z(1)0,z(2)0, : : : ,z(N)0]0 (31)

h(x̂j) = [h(x̂j ,1),h(x̂j ,2), : : : ,h(x̂j ,N)]0 (32)

R =

266664
R(1) 0 ¢ ¢ ¢ 0

0 R(2) ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ R(N)

377775 (33)

and

Hj =

266664
[rxh(x,1)0]0jx=x̂j
[rxh(x,2)0]0jx=x̂j

...

[rxh(x,N)0]0jx=x̂j

377775 (34)
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Fig. 4. 99.9999% (ellipsoidal) probability region around the collision point or the target CPA in Scenarios 5 and 6. The target motion

parameter observability is good in both scenarios. (a) Scenario 5. (b) Scenario 6. (c) Scenario 5 magnified. (d) Scenario 6 magnified.

An initial estimate can be obtained by solving (3) with

the noise set to zero based on the measurements for two

transmitters at two different time instants.

The ML estimate of the target parameter x2D in (27)

in a 2-D scenario can be found using the ILS technique

in the same manner.

This paper assumes that a fixed number N of frames

of measurements are processed together using a batch

approach. Therefore, there is no need to use a recursive

algorithm for sequential update. One can sequentially

process the measurements using a recursive estimator as

more and more measurements are received. For exam-

ple, the probability region considered in this paper will

become smaller and smaller as more and more measure-

ments are used in the target parameter estimation. The

decision on collision warning can be made earlier before

N frames of measurements become available. However,

since the problem is highly nonlinear, a recursive esti-

mator would be by necessity suboptimal, either due to

linearization or using a particle filter. We will consider

this in the future: This is a topic for future investiga-

tion.

5. COLLISION WARNING APPROACHES

5.1. Collision Warning via Hypothesis Testing Based
on a Generalized Likelihood Function

The collision event at time t (t to be determined) is

defined by equating the true target position xp(t) to the
ownship position, namely,

fCollision at tg ¢=fxp(t) = s(t)g (35)
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Fig. 5. 99.9999% (elliptic) probability region around the collision point in 2-D scenarios. The target motion parameter is marginally

observable in Scenarios 7 and 8. The target motion parameter observability is good in Scenario 9. (a) Scenario 7. (b) Scenario 8.

(c) Scenario 9. (d) Scenario 9 magnified.

Following [2], the likelihood function of collision

is the pdf of the predicted target position to time t (the

“observation” based on which the collision warning can

be made) conditioned on (35)

¤[xp(t) = s(t); x̂p(t)] = p[x̂p(t) j xp(t) = s(t)]
=N [x̂p(t);s(t),Pp(t)] = j2¼Pp(t)j¡1=2

¢ exp(¡ 1
2
[x̂p(t)¡ s(t)]0P¡1p (t)[x̂p(t)¡ s(t)])

(36)

where x̂p(t) is given by (19). The use of the covari-

ance Pp(t) in (36) is justified based on the discussion

presented in Section 6, which validates the efficiency

of (29).

Since the time t in (36) is not known, we estimate

the CPA time as

t̂CPA = argmaxt
¤[xp(t) = s(t); x̂p(t)] (37)

The CPA time estimate is found by using the Quasi-

Newton method with a cubic line search procedure. The

search starts with an initial value, which can be obtained

using (58) by considering the estimated target parameter
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as deterministic. For the purpose of simulations, the

MATLAB function “fminunc” is used.

The collision warning can be formulated as a hy-

pothesis testing problem as follows. The two hypotheses

are, based on (37)

H0 : xp(t̂CPA) = s(t̂CPA) (38)

H1 : xp(t̂CPA) 6= s(t̂CPA) (39)

The (generalized2) likelihood function for H0 is

¤[H0; x̂p(t̂CPA)] =N [x̂p(t̂CPA);s(t̂CPA),Pp(t̂CPA)]
=N [s(t̂CPA); x̂p(t̂CPA),Pp(t̂CPA)] (40)

For a given level of significance, say 0.0001% (as-

suming this is the desired confidence to avoid collision,

Q = 10¡6 in (25)), there are two equivalent procedures
to determine whether H0 should be rejected.

Procedure 1: one computes

²= [x̂p(t̂CPA)¡ s(t̂CPA)]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ s(t̂CPA)]
(41)

and
²th = F

¡1
Â2
(1¡Q,ndof) (42)

where F¡1
Â2

is the inverse of the cumulative distribution

function (cdf) of a chi-square random variable with ndof
degrees of freedom. If

² > ²th (43)

then s(t̂CPA) is outside the 99.9999% confidence region

centered at x̂p(t̂CPA), then one can say that collision is
unlikely (< 0:0001%). Otherwise a collision warning is

issued.

Procedure 2: one computes

²= [x̂p(t̂CPA)¡ s(t̂CPA)]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ s(t̂CPA)]
(44)

and estimates the probability of collision as

Pc = 1¡FÂ2 (²,ndof) (45)

where FÂ2 is the cdf of a chi-square random variable

with ndof degrees of freedom. If

Pc > 0:0001% (46)

then a collision warning is alerted.

These two procedures are equivalent because of the

invertibility of the cdf of the chi-square distribution.

So far, both the target and the ownship have been

modeled as points of zero size. If one takes the physi-

cal dimensions of both the target and the ownship into

consideration, a safety margin ¢d (which would, typi-

cally, be more than the sum of the target and ownship

sizes) is needed in the decision making. In this case, the

definition of the collision event in (35) will be modified

to be
fCollision at tg ¢=fkxp(t)¡ s(t)k ·¢dg (47)

2This is a generalized likelihood function because it relies on t̂CPA,

which is an estimate.

and the hypotheses in (38) and (39) will be modified as

H0 : kxp(t)¡ s(t)k ·¢d (48)

H1 : kxp(t)¡ s(t)k>¢d (49)

Therefore, H0 in (48) is rejected at a level of

0.0001% if s(t̂CPA) is outside the 99.9999% confidence

region centered at x̂p(t̂CPA) and

¢d <min
x
ks(t̂CPA)¡ xk (50)

subject to

[x̂p(t̂CPA)¡ x]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ x]
= F¡1

Â2
(0:999999,ndof) (51)

that is, the minimum distance between s(t̂CPA) and any

point on the surface of the 99.9999% confidence region

is larger than ¢d.

Equivalently, in a similar way to (44)—(46), one can

also estimate the probability of collision as

Pc = 1¡FÂ2 (²min,ndof) (52)

where

²min = minx
[x̂p(t̂CPA)¡ x]0P¡1p (t̂CPA)[x̂p(t̂CPA)¡ x] (53)

subject to

ks(t̂CPA)¡ xk ·¢d (54)

5.2. Collision Warning Based on a Bayesian Approach

In the Bayesian approach instead of using t̂CPA as

“the collision time,” the approach accounts for tCPA as

a random variable. Since the CPA distance dCPA (the

distance between the target and the ownship at the CPA

time) is a function of the CPA time, dCPA is also a

random variable. One can define the collision event

based on dCPA and estimate the probability of collision

based on an estimated pdf of dCPA.

1) CPA distance as a function of the target parameter:
Under the assumption that both the target and the

ownship are moving with constant velocities, the CPA

time is when the target and the ownship are closest to

each other, that is

tCPA = argmint
kxp(t)¡ s(t)k

= argmin
t
k(x0 + t _x0)¡ (s0 + t_s0)k

= argmin
t
k(x0 + t _x0)¡ (s0 + t_s0)k2

= argmin
t
d2 (55)

Taking the derivative of d2 with respect to t and setting

it to zero

dD

dt
= 2[(x0 + t _x0)¡ (s0 + t_s0)]0[ _x0¡ _s0] = 0 (56)
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the CPA time is obtained as

tCPA =¡
[x0¡ s0]0[ _x0¡ _s0]

k _x0¡ _s0k2
(57)

and the CPA distance is therefore a function of the target

parameter x in (2)

dCPA = f(x) = kxp(tCPA)¡ s(tCPA)k

= kx0¡ s0¡
[x0¡ s0]0[ _x0¡ _s0]

k _x0¡ _s0k2
( _x0¡ _s0)k (58)

In the above, k ¢ k is the Cartesian norm.
2) Estimation of the probability density of dCPA:
Assuming a diffuse (non-informative) prior density

for the target parameter x, as in [2], the posterior den-
sity of x conditioned on x̂ML, given by (29), is approx-
imated as

p[x j x̂ML] =N [x; x̂ML,J¡1] (59)

This Gaussian approximation is reasonable as Section

6 shows that the ML estimate can be considered as

unbiased and statistically efficient, that is, (17) and (18)

hold.

One possible way of estimating the density of dCPA
is to draw Ns samples of x from (59), obtain Ns samples
of dCPA and fit a density based on these samples. In

this paper, we estimate the pdf of dCPA as a Rician dis-

tribution. The validity of fitting the Rician distribution

is confirmed in Section 6. The Rician distribution with

noncentrality parameter º ¸ 0 and scale parameter ¾ > 0
has the density function

pdCPA(x j º,¾) =
x

¾2
exp

μ
¡x

2 + º2

2¾2

¶
I0

³xº
¾2

´
, x > 0

(60)

where I0(¢) is the zero-order modified Bessel function
of the first kind. Based on the Ns samples of dCPA, the

ML estimates ºML and ¾ML can be obtained using the

method presented in [12].

3) Decision making:
One can define the collision event as

fCollisiong= fdCPA · dming (61)

where dmin is the minimum distance between the aircraft

for which a collision will not occur, that is, one believe

that a collision occurs if the estimated dCPA is less than

dmin by taking the aircraft dimensions into account.

Therefore, the probability of collision is

Pc = P(fCollisiong) = P(fdCPA · dming)

=

Z dmin

0

pdCPA(x j ºML,¾ML)dx (62)

The integration in (62) is evaluated using the MATLAB

function “cdf.” The average computational time in a sin-

gle run, including the target parameter estimation, sam-

pling, Rician distribution parameter estimation and the

integration (62), is around 0.6 s. This computation is

performed in MATLAB 2015a on a Windows machine

equipped with a 2.40 GHz Intel Core 2 Quad CPU with

4 GB RAM. Consequently, we feel it is not unreason-

able to claim that it would be real-time feasible with a

dedicated processor and code in machine language.

If Pc is smaller than, say, 0.0001%, the collision is

unlikely and no warning will be issued. Otherwise, a

warning will be given.

6. SIMULATION RESULTS

6.1. Efficiency of ML Estimator of the Target
Parameter

Under the hypothesis Hx that the ML estimator (29)

is unbiased and efficient, that is, the mean of the esti-

mation error is zero and the estimation errors match the

covariance given by the CRLB as in (18), the NEES for

the target parameter

²x = x̃
0J x̃ (63)

is chi-square distributed with nx degrees of freedom.

The sample average NEES from N Monte Carlo runs

would be

²̄x =
1

N

NX
i=1

²ix (64)

where ²ix is a sample from ith Monte Carlo run. The

quantity N²̄x is chi-square distributed with Nnx degrees

of freedom. Therefore, for a given level of significance

®, Hx cannot be rejected if

²̄x 2
·
Lx
N
,
Ux
N

¸
(65)

where Lx and Ux are the 100®=2 and 100(2¡®)=2
percentile points of a chi-square random variable with

Nnx degrees of freedom.

The sample averages of the NEES for the 6-D target

parameter (nx = 6) in Scenario 5 from 100 Monte Carlo

runs based on the CRLB evaluated at the truth and at

the estimate are calculated. The values are 6.2576 and

6.2207, which can be considered practically identical.

Both values fall inside the two-sided 60% probability

region [5.70, 6.29], which means that one can accept the

null hypothesis Hx at a high significance level of 40%,

i.e., we allow a probability of making a type I (reject Hx
when it is true) error that is 40% in this case. In addition,

the likelihood function (13) is exponential, which is

a necessary, although not sufficient, condition for the

MLE to be efficient [16]. This strongly affirms the

acceptability of the CRLB as the actual covariance of the

3-D estimator in Scenario 5. The same reasoning was

used in [11] to demonstrate the statistical efficiency of

composite position measurements from passive sensors

for a variety of geometries.

The sample averages of the NEES for the 4-D tar-

get parameter (nx = 4) in Scenario 9 from 100 Monte

Carlo runs based on the CRLB evaluated at the truth

and at the estimate are also calculated. The values are
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3.9209 and 3.9199, which can also be considered prac-

tically identical. Both values fall inside the two-sided

30% probability region [3.885, 4.103] (i.e., the alter-

native hypothesis H1 (“not efficient”) is rejected at a

rather high significance level of 70%), which confirms

the acceptability of the CRLB as the actual covariance

of the 2-D estimator in Scenario 9. Therefore, the unbi-

asedness and efficiency of the ML estimator is verified

in both scenarios considered in this paper.

Simulation results also show that the collision warn-

ing algorithm based on the CRLB covariance provides

reliable performance by comparing the CRLB-based er-

ror probability of 10¡5 with 105 Monte Carlo runs. The
number of missed collision detections in this case was

2 in 105 runs. If one considers the following hypothesis

test

H0 : PFA = 10
¡5 (66)

H1 : PFA > 10
¡5 (67)

then, based on the Poisson approximation with param-

eter ¸ of the binomial distribution of the number of

missed detections in 105 runs (H0 : ¸= 1; H1 : ¸ > 1

with 105 runs), the probability of getting no more than 2

missed collision detections is 0.9197, i.e., we can accept

H0 at a level of significance of 8%. (The outcome is to

the left of the 8% tail.) With 105 runs and the thresh-

old set for PFA = 10
¡4 (then H0 : ¸= 10), we obtained 5

missed collision detections, i.e., in this case H0 can be

accepted at a level of significance of 93% (unusually

high).

6.2. Efficiency of the CPA Time Estimate

Based on (36), the CPA time estimate t̂CPA in (37) is

a function of the target parameter estimate x̂, denoted as

t̂CPA = g[x̂] (68)

Unfortunately, the function g has no closed-form ex-

pression, therefore, we estimate the variance of t̂CPA us-

ing the unscented transformation technique [3] as fol-

lows:

Firstly, by the method of moment matching, the

Gaussian density N (x̂;xt,P) of the nx-dimensional x̂
(centered at the true value xt; this is in view of the

unbiasedness and efficiency discussed in the previous

subsection) is replaced by a (2nx+1)-point probability

mass function (pmf)

p(x̂) =

nxX
i=¡nx

wi±(x̂¡ x̂i) (69)

where ±(¢) is the Dirac delta function. The sigma points
of the pmf are

x̂i = xt + sgn(i)a[P]
1=2

jij i=¡nx, : : : ,nx; a 2 R (70)

where [P]
1=2
i is the ith column of the Cholesky factor

of P defined by

nxX
i=1

[P]
1=2
i ([P]

1=2
i )0 = P (71)

and the signum function is defined as

sgn(i)
¢
=

8><>:
¡1 i < 0

0 i= 0

1 i > 0

(72)

The point masses are [3]

wi =

8><>:
1

2a2
jij= 1, : : : ,nx

a2¡ nx
a2

i= 0

(73)

which sum up to unity. With the sigma points and point

masses specified above, the pmf (69) has the same mean

and covariance matrix as the Gaussian pdf N (x̂;xt,P)
regardless of the value of a. A reasonable choice of a isp
nx+2, so we use that in this paper. In a simulated

scenario, the true value of the parameter is known.

However, in a real scenario where the true value of

the parameter is unknown and needs to be estimated,

the sigma points of x̂ need to match the moments of
N (x̂,P) with P evaluated at the estimate.
Secondly, a sigma point of t̂CPA corresponding to x̂

i

can be obtained as

t̂i = g[x̂i] (74)

Lastly, the pdf of t̂CPA is approximated by the pmf

p(t̂CPA) =

nxX
i=¡nx

wi±(t̂CPA¡ t̂i) (75)

which has mean

t̄ =

nxX
i=¡nx

wit̂i (76)

and variance

¾2t =

nxX
i=¡nx

wi(t̂i¡ t̄)2 (77)

If we assume that t̂CPA is a Gaussian random variable

with mean tCPA and variance ¾
2
t , then under the hypoth-

esis Ht that the estimator (37) is unbiased and efficient,

the NEES for the CPA time

²t =
(tCPA¡ t̂CPA)2

¾2t
(78)

is chi-square distributed with 1 degree of freedom.

The sample average NEES from N Monte Carlo runs

would be

²̄t =
1

N

NX
i=1

²it (79)

where ²it is a sample from ith Monte Carlo run. The

quantity N²̄t is chi-square distributed with N degrees of
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Fig. 6. Collision warning is “on” in a single run in Scenarios 5 and 9. (a) Scenario 5. (b) Scenario 9.

freedom. Therefore, for a given level of significance ®,

Ht cannot be rejected if

²̄t 2
·
Lt
N
,
Ut
N

¸
(80)

where Lt and Ut are the 100®=2 and 100(2¡®)=2
percentile points of a chi-square random variable with

N degrees of freedom.

The sample averages of the NEES for the CPA time

estimate in Scenario 5 from 100 Monte Carlo runs based

on the true value and the estimate of the target parameter

are calculated. The values are 1.0914 and 1.0950, which

can be considered practically identical. Both values fall

inside the two-sided 60% probability region [0.879,

1.117], which confirms the unbiasedness and efficiency

of the CPA time estimate in Scenario 5 for the 3-D case.

The sample averages of the NEES for the CPA time

estimate in Scenario 9 from 100 Monte Carlo runs based

on the true value and the estimate of the target parameter

are calculated. The values are 0.8753 and 0.8737, which

can also be considered practically identical. Both values

fall inside the two-sided 60% probability region, which

confirms the unbiasedness and efficiency of the CPA

time estimate in Scenario 9 for the 2-D case.

6.3. Collision Warning Based on the Generalized
Likelihood Function

The collision warning is “on” for all 100 runs in

Scenario 5 and 9 with the target and the ownship

modeled as points, that is, at the predicted CPA time the

ownship is inside the confidence region of the true target

around its predicted position as illustrated in Figure

6(a) and 6(b). The collision warning is “off” for all

100 runs in Scenario 6, that is, at the predicted CPA

time the ownship is outside the confidence region of the

true target around its predicted position as illustrated in

Figure 7(a).

Taking the physical dimensions of the aircraft into

consideration and using a safety margin of 100 m, the

collision warning is “on” for all 100 runs in Scenario

5 and 9. However, the collision warning is “on” for

all 100 runs in Scenario 6, that is, false alarms occur.

Although at the predicted CPA time the ownship is

outside the confidence region of the true target around

its predicted position, the minimum distance between

the ownship and the ellipsoid is less than the safety

margin as illustrated in Figure 7(b).

The term “CPA angle” is defined as the angle formed

by the target velocity vector and the ownship velocity

vector at the CPA time when they are projected on a

plane at the same altitude. Therefore, the CPA angle is

180± in Scenarios 5, 6 and 9.
The performance of the 3-D likelihood-based colli-

sion warning algorithm is further evaluated by varying

the target and ownship altitude separation3 from 0 to

300 m in steps of 50 m and the CPA angle from 180± to
135± in steps of 15± one parameter at a time in Scenario
5. From Figure 8(a), the 3-D likelihood based collision

warning algorithm has no missed detections of a colli-

sion in 100 runs. There are some false alarms when the

intruder and ownship altitude separation is 50 m and

the number of false alarms increases slightly with the

CPA angle decreasing. There are no false alarms when

the intruder and ownship altitude separation is beyond

100 m.

31000 ft (¼ 300 m) is a global standard for vertical separation
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Fig. 7. Collision warning decisions in a single run in Scenario 6. Collision warning is “off” without a safety margin but is “on” with a

safety margin of 100 m. (a) Without a safety margin. (b) With a safety margin of 100 m.

Fig. 8. The number of warnings in 100 runs using the 3-D likelihood based collision warning algorithm. (a) Without a safety margin.

(b) With a safety margin of 100 m.

Figure 9(a) shows the histogram of the logarithm of

the estimated probability of collision in 10, 000 runs

from scenarios with different CPA angles when there

is a collision (the target and ownship altitude separa-

tion is 0 m). The estimated probability of collision has

a similar distribution for different CPA angles, which

is also observed at other levels of altitude separation.

More than 95% of the time, the probability of collision

is estimated to be larger than 10%. Since the proba-

bility of collision is always estimated to be larger than

0.0001%, there are no missed detections, which con-

firms the results shown in Figure 8(a). As the sepa-

ration in altitude increases from 0 to 50 m, the es-

timated probability of collision gets much smaller as

shown in Figure 9(b). Similar phenomena are also ob-

served at other CPA angles. False alarms occur about

30% of the time when the estimated probability of col-

lision is larger than 0.0001%. When the intruder and

ownship altitude separation is beyond 100 m, the esti-

mated probability is always less than 10¡16 and hence
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Fig. 9. The histogram of log10 Pc in 10000 runs using the 3-D likelihood based collision warning algorithm. (a) Separation in altitude is

0 m. (b) CPA angle is 180±.

Fig. 10. The histogram of log10 Pc in 10000 runs using the 3-D likelihood based collision warning algorithm with a safety margin of

100 m. (a) CPA angle is 180±. (b) Separation in altitude is 150 m.

the corresponding distributions are not shown in Fig-

ure 9(b).

With a safety margin of 100 m, from Figure 8(b), the

3-D likelihood based collision warning algorithm has no

missed detections of a collision. However, it becomes

more conservative and there are always false alarms

when the intruder and ownship altitude separation is

below 100 m, which is not surprising because of a safety

margin of same distance. The number of false alarms

starts to decrease at 150 m altitude separation.

When the altitude separation is 0 or 50 m, it turns out

that the estimated probability of collision is always 1 in

10,000 Monte Carlo runs. When the altitude separation

is 100 m, the estimated probability of collision is not

always unity: see Figure 10(a) for the distribution of its

logarithm. When the separation is 150 m, the estimated
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Fig. 11. The number of warnings in 100 runs using the 2-D likelihood based collision warning algorithm. (a) Without a safety margin.

(b) With a safety margin of 100 m.

Fig. 12. The histogram of log10 Pc in 10000 runs using the 2-D likelihood based collision warning algorithm. (a) Separation in altitude is

0 m. (b) CPA angle is 150±.

probability of collision becomes much smaller. The

similar distributions are also observed at other CPA

angles as illustrated in Figure 10(b). It is estimated to

be less than 0.0001% for more than 90% of the time.

When the intruder and ownship altitude separation is

beyond 200 m, the estimated probability is always less

than 10¡16.

The performance of the 2-D likelihood based colli-

sion warning algorithm is evaluated in the same manner.

Figure 11(a) shows that there are no missed detections

of collisions in 100 runs, which is the same as in the

3-D scenarios. The estimated probability of collision is

very close to 1 for most of the time in 10000 runs and

its distribution is similar at different CPA angles as indi-
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Fig. 13. The histograms of dCPA with fitted Rician distributions when the CPA angle is 180
±.

Fig. 14. Performance of the 3-D Bayesian collision warning algorithm with dmin = 100 m. (a) Histogram of the number of warnings in 100

runs. (b) Histogram of log10 Pc in 10000 runs with CPA angle 180
±.

cated in Figure 12(a). The CPA angle has a pronounced

effect on false alarms in the 2-D case. Recall that in

the 2-D scenarios it is (conservatively) assumed that the

intruder is at the same altitude as the ownship, which is

not true when the altitude separation is not zero. When

the CPA angle is close to 180±, the collision is very
likely to occur based on the same altitude assumption,

and, consequently, the false alarm rate is therefore very

high. At other CPA angles, as the altitude separation

increases, the number of false alarms decreases and the

estimated probability of collision becomes smaller as

indicated in Figure 12(b).

With a safety margin of 100 m, there are no missed

detections of collisions. However, there are more false

alarms because of both the same altitude assumption

and the safety margin.

Based on the above observations, we submit that 3-

D estimation with at least 3 transmitters is the only one

reliable configuration for collision warning and that 2-D

estimation with 2 transmitters is prone to false alarms
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when the CPA angle is 180± even if there is more than
400 m altitude separation.

6.4. Collision Warning Based on the Bayesian
Approach

The one-sample Kolmogorov-Smirnov test fails to

reject the hypothesis that 1000 samples of dCPA comes

from a Rician distribution with parameters that are ML

estimates based on the same 1000 samples in all 100

Monte Carlo runs in each of the 3-D scenarios that are

used to evaluate the likelihood based collision warning

algorithm in previous subsection. The fitted Rician dis-

tributions with the corresponding histograms of dCPA at

different levels of altitude separations at 180± CPA angle
are shown in Figure 13. As shown in the previous sub-

section, 2-D collision warning with 2 transmitters under

the same altitude assumption is unreliable because it is

prone to false alarm, therefore the Bayesian approach

is considered only in the multistatic configuration with

3 transmitters in this paper. It turned out that the hy-

pothesis that the pdf of dCPA is Rician is no longer valid

in the 2D scenarios when the same altitude assumption

does not hold. Nevertheless, it is possible to estimate the

probability of collision by fitting a kernel distribution

instead of a Rician distribution in those 2-D scenarios.

The performance of 3-D Bayesian collision warning

algorithm with dmin = 100 m is shown in Figure 14,

which is very similar to that of 3-D likelihood based

collision warning algorithm with a safety margin 100 m.

There are no missed detections of a collision but there

are always false alarms when the intruder and ownship

altitude separation is below 100 m. The number of false

alarms starts to decrease at 150 m altitude separation and

becomes zero when the altitude separation is beyond

200 m.

Comparing Figure 14(b) and 10(a), the estimated

probability of collision from the 3-D Bayesian algo-

rithm has a similar distribution to that from the 3-D

likelihood based algorithm. As the altitude separation

increases, the estimated probability of collision is get-

ting smaller. When the altitude separation is 0 or 50 m,

it turns out the estimated probability of collision is al-

ways 1 in 10,000 Monte Carlo runs. When the intruder

and ownship altitude separation is beyond 200 m, the

estimated probability is always less than 10¡16.

7. CONCLUSIONS

The ability to sense and avoid non-cooperative tar-

gets is essential for UAS to perform routine tasks when

they are not alone in the airspace. We investigated sev-

eral configurations with bistatic range and range rate

measurements for collision warning. It turned out that

a multistatic configuration is needed to provide good

observability of the target, which is useful for collision

warning. The minimum number of the transmitters re-

quired is three in a 3-D scenario and two in a 2-D sce-

nario. We also implemented an ML estimator in both

types of scenarios using the ILS technique and showed

that the estimator can be considered as statistically effi-

cient through Monte Carlo simulations for the scenarios

considered. Based on the ML estimator, the collision

warning was approached in two different ways. The

first method is formulating the collision as a hypothesis

testing problem using a generalized likelihood function,

where the efficiency of the CPA time is also verified.

The second method is a Bayesian formulation focusing

on the time of CPA modeled as a random variable. Only

the multistatic configuration with three transmitters is

reliable for collision warning because the multistatic

configuration with two transmitters based on the same

target and ownship altitude assumption turns out to be

prone to false alarms. When the minimum distance in

the Bayesian approach is the same as the safety margin

in the likelihood based approach, both algorithms yield

very similar collision warning performance.
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